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INTRODUCTION

Probit analysis was developed to analyze discrete or dichotomous data obtained
by many research endeavors including natural or threshold response rate for biological
systems. We have been using this method as a statistical tool to determine the probability
of dose-response curves for minimum visible lesions (MVLs) produced within the eye for
single laser pulses. In most cases, the dose or laser pulse energy values required to
produce a visible lesion within the eye are reported as the EDso dose or that dose which
has a probability of 50% of creating a visible lesion. However, the complete probability
curve is calculated during the iterative process, and the printout generally gives points
between 1% and 99%.

The beginning of probit analysis dates back over 60 years when the Karber'
method was first published to estimate the mean and standard deviation of the distribution
of data where the distribution was unknown. The Kérber method can still be used as a
first approximation for the nonparametric estimates of the mean and standard deviation
for the exact probit solution which involves a series of successive approximations. The
exact probit method of solution has replaced most other methods because it conveys the
maximum amount of information from the data. In addition, the exact method provides
the associated confidence intervals, which allows inferences to be made about the quality
of the experiment and tightness of the data so that obvious deficiencies may be corrected.

Graphical methods™” for the probit analysis have been around for over 50 years
and were used quite extensively because of their simplicity and ease of use. The data is
plotted using this method, a straight line is drawn through the data points, and the EDso
level is read from the graph. The slope of the straight line can also be determined from
the graph. Later, a simplified graphical method was developed which included graph
paper especially designed to permit rapid analysis. However, all of these methods were
developed before the modern day computer and therefore cannot compete with the speed
or accuracy of computer-derived exact solutions of the probit iterative process. The
bootstrap method* was not considered in this study because we were interested in only
two-level trials (i.e., yes/no data), and this type of data was not compared in the study by
Foster and Bischof.*

METHODS

Most of the original theoretical development of the probit methods can be
attributed to Finney3 , who first published a book on probit analyses in 1947. Since then,
there have been a number of revisions, editions, and reprinting of his original book, and
in one 10-year period between 1978 - 1988, there were over 2300 citations* of his books
in the literature. Thus, his procedure is the most widely used to analyze yes/no data and
other discrete event data. Finney developed the mathematical models to utilize probit
analyses, but it still takes a computer program to process the data. Many programs for
many different computers have been written to perform the probit procedures which were



developed by Finney, and most will calculate the probability curve equally well.
However, to standardize the reporting of data in the literature, the SAS Institute, Inc?,
Cary, NC, developed computer programs for many different computer systems and
operating systems which calculate maximum-likelihood estimates of regression
parameters and natural (threshold) response rate for the discrete event data. Thus, these
programs calculate the exact same results for all systems. One of the authors of this
report, Captain Lonnie Manning, has written a program in C++ that operates on a PC
computer to utilize the methods developed by Finney (see Appendix B). This program
produces all of the same output parameters as SAS Probit. The SAS Institute has named
its process The Probit Procedure, and we call ours EZ-probit.

There were several reasons for writing the EZ-probit program. In the literature,
we find many references to Finney and the method he employs for the Probit calculations.
However, SAS's Probit and Finney's Probit are different. Although Finney does briefly
mention the method employed by SAS (SAS's Probit is actually a Normit since the Probit
is not centered about Y-5). The EZ-probit program incorporates Finney's expressions
exactly. Comparison of the SAS output and that from Finney's Probit shows they differ
for a small number of data points with agreement increasing as the number of data points
increase. This is most noticeable in the fiducial limit calculations. In most instances, the
difference is inconsequential compared to the experimental errors inherent in our type of
experiments(i.e.+/- 7% for energy).

The Probit Procedure computes maximum-likelihood estimates of the slope and
intercept of the probit equation using a modified Newton-Raphson algorithm. The data
set used by SAS Probit must include either a response variable giving the level of
response for each observation or a pair of variables giving the number of subjects tested
and the number of subjects responding for each dose of the independent variable values.
Two goodness-of-fit chi-square values are computed if requested. Inverse confidence
limits for one of the independent variables can be requested, and the confidence limits are
computed using a critical value of 1.96, which corresponds to an approximate 95%
confidence interval. If the Pearson goodness-of-fit chi-square test is requested and the p-
value for the test is too small, variances and covariances are adjusted by a heterogeneity
factor, and a critical value from the t-distribution is used to compute the fiducial limits
(FLs). The p-value used for the chi-square test can be set to different levels with a default
p-value of 0.10. Also calculated and outputted is the slope of the probit line between the

EDg4 and the EDsg values.

The EZ-probit program is faster and much more user-friendly than the existing
SAS program. All relevant parameters can be set by the click of a mouse. To use SAS's
Probit, the whole SAS program must be loaded. EZ-probit is a Windows application
written in C++ (Borland 4.0 Compiler) and comes in both a 16 bit or 32 bit application.
In addition, EZ-probit allows flexibility in setting the confidence to something other than
95% which is currently very difficult to accomplish in SAS.



A good treatise on the graphical methods was developed by Frisch.® Step-by-step
procedures are presented in that report, together with comparisons between graphical,
Kiérber, and exact probit solution. In this paper, we present his results and compare them
to results run on SAS Probit and EZ-Probit, along with results from the MVL and other
data sets created to influence their outputs.

DATA SETS

The first data set presented comes from Frisch’, which is for the 70-millisecond
(ms) pulse duration and 170 exposures. In his report, Frisch thoroughly analyzes the
three methods and clearly explains each step in each method. Real data are used in each
case. His report should be consulted for learning each procedure and what auxiliary data
is necessary. Table 1 lists the results from Frisch’s calculations for the graphical method,
Kérber approximation, his exact probit solution, and the results from SAS Probit and our
EZ-Probit (both of which calculate the exact probit solution using an iterative process).

Table 1. Comparison of Four Methods for Data from Frisch.®

Parameter Graphical © Kirber Exact Probit SAS Probit EZ-Probit
EDso 12.5 13.15 12.5 12.4 12.4
Upper FL 14.4 14.55 14.0 13.8 13.8
- Lower FL 11.2 11.65 11.0 10.8 10.8
Slope of Probit 59 — 5.68 5.67 5.67
Ratio(EDgs/ EDsy)  1.48 -— 1.50 1.50 1.50
Analysis of Table 1

The listed graphical, Kérber, and exact probit parameter values above were
calculations by Frisch, and the SAS Probit was run on the PC version of The Probit
Procedure. The exact probit used by Frisch should be equivalent to the SAS probit since
they both use the iterative process to achieve a final solution. The differences between
the three methods (graphical, Kérber, and exact probit) are minimal, and it is obvious that
the three methods give comparable results. SAS Probit and the EZ-Probit also print out
the goodness-of-fit test, and for the Pearson chi-square, the value was 2.23 and the
Prob>Chi-Sq was 0.97. SAS Probit and EZ-Probit gave identical results out to four
decimal places. Therefore, this data set did have a good distribution. However, this is
only one data set, and the results of the calculations depend on the data set. One
difference between Frisch and the SAS Probit is the way slope is defined and printed out
by SAS Probit. Frisch defines slope of the probit as the ratio of EDg4 / EDso, while SAS
Probit defines it as the slope of the straight line of best fit to the data. The two are



inversely related, and the slope of the probit may be obtained from the EDg4 / EDsp ratio
simply by taking the reciprocal of the logarithmyo of the ratio (EDss/ EDso). About 2.5 is
the crossover point of these two numbers, and the theoretical minimum for the ratio is “1”
(i.e., the slope of the probit would be infinite in this case). However, for made-up data,
the smallest ratio is 1.02, while the slope is calculated to be 90 (see Table 9).

In order to make a valid comparison, real data sets as well as created data sets
must be analyzed using all of the different methods, and their outputs must be compared.
Other data sets compared were the MVL data for 90- and 600-femtosecond (fs)
pulsewidths. These data sets consisted of 122 exposures at 90 fs and 121 exposures at
600 fs, both at 580-nanometer (nm) wavelength for the rhesus monkey eye. A graphical
analysis was performed on each set and compared with SAS Probit results. The results
for these two sets are listed in Tables 2 and 3.

Table 2. MVL Data at 90 Femtoseconds.

Parameter Graphical Kirber SAS Probit EZ-Probit
EDsp 0.46 0.60 0.43 0.43
Upper FL 0.77 0.71 0.61 0.61
Lower FL. 0.25 0.49 0.27 0.27
Slope of Probit 1.04 ——— 1.61 1.61
Ratio(EDsgs/ EDsg) 9.9 ———- 4.2 4.2

Analysis of Table 2

Table 2 again shows the comparison between graphical, Kérber, and exact probit
as calculated by SAS Probit and EZ-Probit. This data set was selected because of its
spread in data and its low slope calculated by SAS. This data set illustrates the necessity
of the iterative process involving a series of successive approximations to obtain the final
solution. The Kirber method gives only a first approximation, while the graphical
method gives only an eyeball approximation with its linear regression. SAS Probit
calculated a higher slope value than the graphical, 1.61 versus 1.04, respectively. The
goodness-of-fit test gave a value of 55 and a Prob>Chi-Sq of 0.92. If one assumes that a
good and reasonable data set should have at least a 0.90 for a Prob, then this data set does
fit the requirement.

The data set shown in Table 3 was selected because of its high value of slope of
the probit line and tightness of data points. The goodness-of-fit test gave a value of 30
with a Prob>Chi-Sq of 1.0000. In this case, the three methods gave very close results
which is a good indicator of the power of the interactive process of SAS as compared to
the data in Table 2. The other two methods give good agreement in their approximation



because of the data set. Not only are the EDsos close between the three methods, but the
FLs are also very close to each other. Thus, any of these methods would suffice if all data
sets were as regular as this set.

Table 3. MVL Data for 600 Femtoseconds.

Parameter Graphical Kirber SAS Probit EZ-Probit
EDs 0.24 0.28 0.26 0.26
Upper FL 0.32 0.32 0.31 0.31
Lower FL 0.18 0.24 0.21 0.21
Slope of Probit 3.31 ——— 4.79 4.79
Ratio(EDgs/ EDsp)  2.40 -—-- 1.58 1.58

Analysis of Table 3

Some questions have arisen concerning whether the distribution of data in the set
is normal or unknown. Since the Kirber method reportedly does not depend on a known
distribution, we attempted to show the differences between the methods by using several
known distributions of data. Thus, chi-squared, linear, step, and random distributions
were used in the following data sets.

The data presented in Tables 4 and 5 were obtained from the equation Y = 5.6 +
2X, which plots as a straight line on linear graph paper. The dosage or trial level point
distribution was obtained from a table of chi-square values, and there is no spread in the
data. This normal chi-square distribution of 90 doses or levels with linear increasing yes
responses is presented in Table 4, and the same distribution with varying number of data
points is presented in Table 5.

Table 4. Comparison of Three Methods for an Exact Straight Line Distribution.
(Ninety doses with chi-square distribution of levels.)

Parameter Graphical Kirber SAS Probit EZ-Probit
EDs 0.50 0.50 - 0.50 0.50
Upper FL 0.70 0.72 0.72 0.72
Lower FL. 0.36 0.40 0.35 0.35
Slope of Probit 2.0 e 2.0 20
Ratio(EDgs/ EDsg) 3.2 -—— 32 3.2




Analysis of Table 4

This data set was chosen to see how well SAS Probit performed as compared to
the graphical procedure since this is a perfect data set with chi-square distribution and no
spread. In this case, the graphical procedure should give an exact solution and the Kérber
method could also be compared. The goodness-of-fit test gave a value of 0.0021 with a
Prob of 1.0000. As can been seen from the results in the table, there is very good
agreement between the four methods. Thus, for this type of data all three methods

perform equally well.

Table 5. Same Distribution as Table 4 for Different Number of Data Points.
(All calculations with SAS Probit. EZ-Probit values shown in ().)

Parameter (# pts) 180 90 45 27 18 14
EDs 0.5 0.5 049 053 0.50 0.50
Upper FL 0.64 072 074 1.14 1.45 9.54
1.32) Q.67
Lower FL. 0.39 0.35 0.32 0.27 0.17 0.02
(.19 (.15
Slope of Probit 2.0 2.0 2.8 2.4 2.8 5.3
Ratio(EDg4 / EDsg) 3.3 33 2.3 2.9 24 1.44
EDg 7.31 7.31 3.35 4,92 343 1.38
EDy; 0.03 0.03 0.07 0.06 0.07 0.18
G-o-F Value 0.0042 0.0021 1.25 339 267 1.6
Prob>Chi-Sq 1.00 1.00 0.99 0.85 0.91 0.98

Analysis of Table 5

The data sets presented in Table 5 were all run with SAS Probit and EZ-Probit to
show the effects of sample size on the various calculated parameters. EZ-Probit gave
identical results to SAS Probit with the exceptions of the two values for the fiducial limits
shown in parentheses below each value. Since the EZ-probit program incorporates
Finney's expressions exactly, there is slight differences between the two methods for
calculating the fiducial limits as shown by these small differences. In most instances
however, the differences are inconsequential compared to the experimental errors
inherent in our type of experiments(i.e.+/- 7% for energy). The variations in the EDso
values were due to the inability to maintain the exact percentages of yes responses in each
level because of so few points at each level. With the fewer points (below 45), the
percentages at each level were no longer constant and there was spread in the data set so
that not all points fell on the straight line. From this table, it can be seen that the
midpoint, EDs, remains fairly constant while the FLs spread apart as the number of
points decreases. In fact, below 14 data points, neither program could obtain FLs with a




95% confidence level. However, it is possible to run EZ-Probit at any confidence level
specified. It is clear that the slope of the probit changed because of the fewer number of
“1”s below 0.5 and the ones used were closer to the EDsq point (i.e., smaller spread in the
data). The span between the EDg; and EDgg points decreased as the number of points
decreased because of the smaller spread in data. From these data sets, it appears that
“reasonable” FLs are not obtained until the data set is larger than 27. Herein we define
reasonable to be when the upper FL is no larger than 50% of EDso, and the lower FL is no
smaller than 50% of EDsy.

The next data set (Table 6) to be compared by the three methods was a set of ten
dosage levels, equally spaced, with a linear increase from 0 to 100% yes responses for the
levels. The levels increased from 0.1 to 1.0 in 0.1 increments, and the response increased
proportionally.

Table 6. Comparison for Equal Doses, Equally Spaced and Linear Response Levels by
Four Probit Methods for 95 Trials. SAS Probit and EZ-Probit equal to four

decimals.
Parameter Graphical Kirber SAS Probit EZ-Probit
EDs 0.46 0.50 0.50 0.50
Upper FL 0.63 0.56 0.60 0.60
Lower FL 0.40 0.44 0.41 0.41
Slope of Probit 4.0 - 4.0 4.0
Ratio(EDgs/ EDso) 1.81 ———- 1.91 1.91
EDy, 1.91 1.91
EDy, 0.13 0.13
G-o-F Value 2.13 2.13
Prob>Chi-Sq 0.98 0.98

Analysis of Table 6

By comparing these four results, all methods work equally well on this data set.
However, a straight line was drawn through a severely curved set of data points, and it
was not obvious by looking at the graph that it would give correct results. In this case,
eyeballing gave results as good as any of the other three methods. Thus, equally spaced
dosages or trial levels appear to be as good as or better than chi-square distribution of
levels. The goodness-of-fit test gave a value of 2.13, and the Prob was 0.98 for both
methods run on the computer.

The next set of calculations was performed on the same distribution but with a
decreasing number of samples. The same percentages of yes responses were maintained
to their limit. These calculations were all performed with SAS Probit and EZ-Probit
(Table 7), and the sample size was reduced from 95 data points to 12. EZ-Probit values,




if different from SAS Probit values, are shown in parentheses. Note that where SAS
Probit was not able to calculate the FLs at the 95% confidence level for the 12 data
points, EZ-Probit was able to calculate the limits at the 85% confidence level.

Table 7. A Comparison of SAS Probit Calculations for Data Sets with Decreasing
Number of Data Points. (Same data as in Table 6.)

Parameter  (datapts) 95 45 22 14 13 12

EDs 0.50 049 049 049 047 049
Upper FL 0.60 062 065 076 076 none
(64 (72) (72) (.63@85%)

Lower FL. 0.41 037 036 020 0,002 none

(36) (24) (10) (34@85%)
Slope of Probit 4.0 5.1 102 8.7 8.0 7.8
Ratio(EDg4 / EDso) 1.81 1.57 1.27 1.28 1.36 1.35
EDy 1.91 1.40 0.84 090 093 0.97
EDg, 0.13 0.17 029 0.26 024 0.24
G-o-F test Value 2.13 146 0.12 0.73 1.17 0.48
Prob>Chi-Sq 0.98 098 099 098 095 0.99

Analysis of Table 7

From this data set, it appears that the minimum number of data points to have
reasonable FLs for this distribution would be about 22 data points because even by
doubling or quadrupling this number, the FLs change minimally. With only 12 data
points, SAS could not calculate the FLs, and the limits were extremely wide with only 13
points. With 14 points, however, the FLs were still not reasonable, but were very close to
the limits. Again, there are slight differences between the fiducial limits at the lower
number of data points which can be attributed to the different methods in calculating the
fiducial limits.

Next, data points were added to the 14-point set in an attempt to reduce the spread
in the FLs to equal those for the 95-point data set. Table 8 gives the results of adding 8
data points in various combinations to the 14-point data set in Table 7 above. The desire
was to minimize the total number of exposures or samples and yet obtain the large
sampling results as those obtained for 95 data points. The starting data was as follows:

dose 0.2 0.3 04 0.5 0.6 0.7 0.8
shots 1 2 3 2 3 2 1
#yes 0 0 1 1 2 2 1



Table 8. Additional Data Points Added to Optimize the FLs and Minimize the
Number of Trials. (Add eight data points: four data points added at ED,s and
four data points added at EDys or at EDgg and at EDg,.)

Data pts added EDsg UpperF. LowerFI. Slope G-of-F Chi-Sq
Original 95 pts 0.50 0.60 0.41 4.0 2.13 0.98
Original 22 pts 0.49 0.65 0.36 10.2 0.12 0.99
Original 14 pts 0.49 0.76 0.20 8.7 0.73 0.98
4-05@ “1” 0.49 0.69 0.27 8.7 0.75 0.98
4-0.5 @ “0”

4-04@75% -’17 0.48 none none 4.0 4,16 0.52
4-0.6 @25% -’17 (0.71@85%) (0.31@85%)

4-04@50% -"1” 0.48 0.79 0.25 5.7 1.83 0.87
4-0.6 @50% -"1”

4-04@25% -"1” 0.49 0.62 0.36 8.3 0.57 0.99
4-0.6 @75% -"1”

4-04@0% -"1” 0.49 0.58 0.40 12.7 0.09 1.00
4-0.6 @100%-"1"

4-03@25% -"1” 0.47 0.67 0.32 5.5 0.24 1.00
4-07@75% -"1”

4-03@0% -"1” 0.48 0.59 0.36 10.5 1.44 0.92

4-0.7@100%-"1"

Analysis of Table 8

With 95 data points, the FLs were 0.60 and 0.41 as compared to the 0.76 and 0.20
with only 14 data points. When all eight data points were added at the EDs level, four
“1”s and four “0”s, the FLs changed very little. Next, four data points were added at the
ED;s level and four data points added at the ED+s level in various combinations as shown
in the table. With three “1”’s and a zero added at 0.4 level, and three “0”’s and a “1” added
at 0.6 level, the FLs could not be calculated with SAS because the probit curve had
predicted the reverse probabilities (i.e., three “0”s and a “1” at 0.4, and the reverse at 0.6).
EZ-Probit was able to calculate the FLs at the 85% confidence level, and the limits are
shown in parentheses. It should be pointed out that the Prob>Chi-Sq was only 0.52,
which showed very poor correlation. Next, two “1”’s and two “0”’s were added at each
point, which was still above the predicted values and, therefore, the FLs were not helped.
Also, the Prob>Chi-Sq was still less than 0.90, which indicated that more data would be
needed before being acceptable. Whenever the predicted results were added (i.e., three
“0”s and one “1” added at 0.4, and three “1”’s and one “0” added at 0.6, the FLs were
drawn closer together and the Prob became 0.99). When four “0”s were added to 0.4 and

four “1”s were added to 0.6 levels, the FLs were actually closer that those obtained with




95 data points. Other data points in two different combinations were added to the EDog
(level=0.3) and an EDs;, (level=0.7) predicted levels as shown in the table. In both cases,
the FLs were brought closer together but not as much as before.

CAUTION: It must be pointed out that the additional data added to the above table was
always added with equal number of data points above and below the EDsp values at
dosage level exactly spaced above and below the EDsp value. This symmetry of adding
data is necessary to prevent having a biased estimate of the EDso. Thus, data may not be
arbitrarily added to an existing data set without carefully designing the additional
experimental data sets.

Another data set which is encountered sometimes with real data is the step
function response in which the responses (0 or 1) are all “0” below a certain level or dose
and all “1” above the level or dose. This data set cannot be analyzed graphically or by the
Kirber method because the slope of the probit curve would be a vertical straight line, and
no points would fall on the graph. Also included was an increasing number of points
overlapping from 1 and 2 points to a constant or flat response of 50% between two levels.
In Table 9, the response of p = .5 is constant for levels of 0.4, 0.5, and 0.6 in the 4th
column. Columns 5 and 6 both have p = .5 for levels .4, .5, and .6 and, in addition, levels
.3 and .7 have either 3 out of 10 shots or 5 out of 10 shots forp=.3 or p=.5. The datain
column 5 with p =.3 for level 0.3 is 30% (i.e., three “1”s out of 10 trials and three “0”’s in
level .7, while in the 5th column at p = .5, the response is 50% for both the 0.3 and 0.7
levels). In other words, the flat response occurs between 0.3 and 0.7 levels or for 5 levels
in column 6. All computer runs with SAS contained 100 data points.

Table 9. SAS Probit Calculations for Step Functions and Constant Response Levels.
Step distribution at 0.5 and p = .5 at .3, .4, .5, .6, and .7. One hundred data
points used. SAS Probit and EZ-Probit gave identical results as shown.

Parameter Step function 1pt 2pts p=S5 p=3 p=5
no overlap overlap overlap (.4.5..6) (3.7) (3.7

EDs 0.5 051 049 048 046 044
Upper FL none 055 054 053 053 059
Lower FL none 0.46 0.45 0.42 038 0.28
Slope of Probit 89.8 206 154 8.2 52 42
Ratio(EDg4 / EDso) 1.02 1.12 118  1.33 1.56 1.7
EDg, 0.53 0.66 070 092 128 1.60
EDy, 0.47 039 035 025 0.16 0.12
G-o-F Value 0.00 047 021 101 846 162
Prob>Chi-Sq 1.00 1.00 1.00 026 039 0.04
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Analysis of Table 9

With no overlapping of data points, neither SAS Probit nor EZ-Probit could
calculate FLs, and the calculated slopes from both were very large. Also note that the
EDgg and EDy; are almost the same as the EDsq. As the number of overlapping data
points increases and the slope of the probit decreases very rapidly, there is not much
change in the fiducial limits. For the last two columns, adding “1”’s to the 0.3 level
decreased the EDs value and increased the spread between the FLs. This occurs because
the number of “1”’s and “0”’s added did not match predicted values for the levels .3 and .7.
Also note that in the last two columns the value was greater than 10 and the Prob was
between 0.39 and 0.04. These are very different values from those calculated for a
normal distribution and would indicate that more data points need to be taken even
though the FLs may appear to be reasonable.

CONCLUSIONS

The main conclusion to be drawn from this study is that the exact probit procedure
is the one that should be used on any set of data and that the graphical solution is not
adequate with todays computer technology. As quoted by Frisch®, “Graphical solutions
very often are adequate but complications may make this type of solution unsatisfactory --
and-- the exact probit method of solution is the most advantageous since it conveys the
maximum amount of information from the data”. Thus with the computer solutions
available today, it is unthinkable to resort to graphical or calculator solutions such as the
Karber method for only a first approximation.

Many other conclusions may be drawn from these data sets, but the main
consideration is the ability to maximize the reliability of the experimental procedure with
a minimum number of data points. It was shown that the EDsy may be obtained with FLs
at their 95% confidence interval with as few as 13 data points, even though the span
between the FLs may be wide. It was also shown that with only eight more data points
added, the FLs could be as good as or better than if 95 data points had been taken,
depending on the data points added. It may be concluded that when data points are added
to an existing data set with 95% FLs, whenever those data points are at doses below the
EDso values and the percentages of yes or “1” is less than the ED percentage at that dose,
the combined data set will be helped. If the percentages of yes or “1” are greater than the
ED value, the data set will not be helped. In other words, for a fixed number of data
points added below the EDso, the percentage of positive responses must be less than the
ED percent at that dose or the lower FL will be further from the EDsy value and may not
be calculable at the 95% confidence level. The reverse is true for data points added above
the EDso where the percentages of yes or “1” must be greater than the ED percentage at
that dose level. The reasoning for the above is obvious due to the maximum likelihood
estimators of the probit procedure, and when the new data does not match the probit
probabilities, the combined data set becomes either better or worse.
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Another conclusion with the most significance is that it is relatively easy to write
your own computer program to calculate the probability curve and the FLs for any level
of significance desired. EZ-Probit has been shown to be equivalent to the SAS Probit
with the exception of the fiducial limits for a limit number of data points, and also has the
added flexibility to be able to determine the FLs at any desired level of confidence. EZ-
Probit is a lot easier to use, faster than SAS Probit, and has more capability. Since EZ-
Probit has been installed on the P-drive, it is available for use by anyone, anywhere,

anytime.
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APPENDIX A:
PC COMPUTER PROGRAM

FOR
SAS PROBIT
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The following program was written for SAS to operate on the PC computer and prints the
outputs. A brief explanation of what the code does follows the program. A complete
description of the terminology is given in the SAS/STAT Software Syntax manual.’

1. filename testdata ‘filename.dat’;
2. title 'filename.dat";

3. data indata;

4, infile testdata;

5. input energy mvl;

6. run;

7.

8. proc sort data = indata;

9. by energy;

10.  runm;

11.

12.  proc print data = indata;
13.

14.  run;

15.

16.  proc sort data = indata;
17. by desending energy;
18. run;

19.

20.  proc probit data = indata outest = mvldata order = data covout Hprob = 0.10
lackfit log10 inversecl;

21. class mvl,;

22. model mvl = energy / lackfit d = normal corrb covb inversecl;
23. output out = mdat prob = p xbeta = xB std = sd;
24.  runm;

25.

26.  goptions target=winprtg; /* grey-scale postscript */
27.

28.  goptions rotate = landscape;

29.

30.  proc gplot;

31. axis logbase = 10 logstyle = power;

32. plot mvl*energy p*energy / overlay;

33. run;

The first 6 lines read the data from a file into a SAS data set variable named “indata.”
The file should be a two-column list of numbers separated by a space with each line
terminated with a return character. The first column should be the dose or energy
delivered and will be read into the “energy” array. The second column should be the
yes/no response (1 = yes, 0 =no) to the dose. This column will be read into the “MVL”
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array. Lines 8 through 10 sort the data set by energy in ascending order for printout in
lines 12 through 14. Lines 16 through 18 sort the data again by energy in descending
order for the probit procedure. This last sort is to ensure that the first data point is a yes
response. The SAS probit procedure assumes that the first data point’s response is the
value that will be considered a “yes” response for the current run. The call to the probit
procedure begins on line 20 and ends on line 24. The following is a description of the
flags used in the call to the probit procedure and their purpose.

data Supplies the name of the SAS data set to be used by the probit procedure.

outest Supplies the name of the SAS data set where the output will be written.

covout Writes the covariance estimates to the outest data set.

Hprob Specifies the probability level to indicate the goodness of fit.

lackfit Performs a Pearson chi-square test of the fit and log-likelihood ratio chi-
square test of the fit.

logl10 Converts the independent variable to its log base 10 value for analysis.

inversecl Computes the confidence limits for the independent variable

The “class” statement on the next line names the response variable (mvl) for the probit
analysis. The “model” statement specifies the response variable and the independent
variable it is based on. The “model” statement also has several flags associated with it that
specify output options and probit parameters. The following is a list of the options
specified and their purpose.

lackfit Performs a Pearson chi-square test of the fit and log-likelihood ratio chi-
‘ square test of the fit.

d Specifies the type of statistical distribution to use.

corrb Prints the estimated correlation matrix of the parameter estimates.

covb Prints the estimated covariance matrix of the parameter estimates.

inversecl Computes the confidence limits for the independent variable.

The last statement is the “output” statement. This statement associates data output from
the probit procedure with variable names that can be used later in the SAS run. The rest
of the statements in the script specify printing options for the graph output.
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APPENDIX B:

EZ-PROBIT COMPUTER PROGRAM
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The following program was written by Captain Lonnie Manning to perform the probit
calculations as outlined in Finney’s book.

EZ-PROBIT
TOPIC: Overview of how to calculate EDsp using the EZ-Probit method.

Starting point for this type of “statistic” is the probability function
P(x)= [ f(t)ds

EZ- Probit assumes a normal distribution for this type of data. Thus,

~(x-w?

1
f(x)—oﬁn—exp( > ).

Making the (probit) transformations

yos= =W g,
o o

we get
t=Y-5 1

2
PE¥-9= | s exp(—-%)dt

, which can take on negative

The normal equivalent deviate (NED) uses, ¥ = (x-p)
values. Y-5 typically does not. ¢
THE CALCULATION
THE DATA

X; Logio of the i® unique energy level.
n The number of trials at x;
n The number of lesions for x;

pi =r;_Estimated P(x).
h;
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WORKING PROBITS

The equation, Y -5 = el
(]

, can be rewritten as:

Y =a-x; +b.

The basic concept behind probit is to find the slope and intercept of the above equation.
Straight-forward linear regression (LR) or weighted LR does not provide the most
accurate description of this system. This is accomplished by introducing “working

probits” (WP).

The WP is derived from the maximum likelihood equation and is given by:

y_=¥+(pi-P(Y;_5))

Zi

where
1 ¥, -5)°
zi = —g e} |
N

For p, = 0, we have the famous y,

P, -5)
Yo=Y, -
%
For p, = 1, we have the famous y,,,
yo g $L2PE=D _y 0C -9
Z; Z;

PERFORMING THE CALCULATIONS

Step 1.
Choose an approximate slope and intercept for the line, Y, =ax; +b.

For most cases, ¥, =5, will do nicely as a starting point.

Step 2.
Calculate a new slope, a' and intercept b' using weighted LR with a weighting

factor of:

z”

W, = .
TR, - 5)(1-P(, -5))
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Step 3.
Calculate new y, using the results of step 2.

Y' =a'x, +b'..

Step 4.
Do steps 2 and 3 until it converges.

Step S.
Once the slope and intercept are obtained, Log (EDsp) can be calculated.

= 12 1
Si P(Y-5= ——)dt =— , for Y=5,
ince P(Y —-5) imexp( 2) 5 or
—h! -3 l._
Log(ED50) = x4, =5—'b—,or X5, =§—f{-ﬂ.
a a

Note: In reality, one calculates the equation,Y = y +a'(x —X) , since y, a' and X are used
later to calculate FLs.

THE FOLLOWING PROGRAM PERFORMS ALL OF THE REQUIRED
CALCULATIONS:

Subroutine 1. EZ-I0.H
int iofile (long double *a,int *b,string f_name,int lin_log){

long double DUM_a ,en;
ifstream inf(f_name.c_str(), ios::in | ios::nocreate );
int i,nmax,k,DUM_b,low hit;

i{f (lin_log==1)

for (i=0;inf.eof )!=1;i++)

{
inf>>en;
inf>>hit;
if (inf.eof()!=1)
{ a[i]=logl0l(en);
bli}=hit;
}
3%
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for (i=0;inf.eof()!=1;i++)

{
inf>>en;
inf>>hit;
if (inf.eof()!=1)
{ a[i]=en;
b[i]=hit;
}
3 5
inf.close();
}
nmax=i-2;
for (k=0;k<=nmax;k++) //Cheap & dirty sorting procedure
{
low=k;
for (i=k+1;i<=nmax;i++)
{ if(alil<=allow]) low=1; };
DUM_a=a[low];DUM_b=b[low];
a[low]=a[k];b[low]=b[k];
a[k]=DUM_a;b[k]=DUM_b;
%
return nmax;
%

Subroutine 2. N-INV.H

routine 2. //The Inverse of the standardized Normal distribution use for fiducial limits

int set_ninv(long double * );

int set_ninv(long double *a ){

a[0]= -2.3263478740408411;  //norm inverse of .01
a[1]=-2.05374891063182305;

a[2]= -1.88079360815125094;  //norm inverse of .03
a[3]= -1.75068607125216998;

a[4]= -1.64485362695147271;  //norm inverse of .05
a[5]=-1.55477359459685354;
a[6]=-1.47579102817917073;

a[7)= -1.40507156030963255;

a[8]= -1.34075503369021637;

a[9]= -1.28155156554460047; //morm inverse of .10
a[10]= -1.03643338949378955; //norm inverse of .15
a[11]=-0.841621233572914189;

a[12]= -0.674489750196081728;

a[13]}= -0.524400512708040724;

a[14]= -0.385320466407567563;
a[15]=-0.253347103135799736;
a[16]=-0.125661346855073969;

a[17]= 0.00000; //norm inverse of .5
a[18]=0.125661346855074109;
a[19]=0.25334710313579988;
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a[20]= 0.385320466407567713;

a[21]= 0.524400512708040884; //by.05
a[22]= 0.674489750196081877,
a[23]=0.84162123357291437,

a[24]= 1.03643338949378979;

a[25]= 1.28155156554460076; //norm inverse of .90
a[26]= 1.34075503369021653;

a[27]= 1.40507156030963272; //by .01
a[28]= 1.47579102817917092;

a[29]= 1.55477359459685374;

a[30]= 1.64485362695147295;

a[31]= 1.75068607125217026;

a[32]= 1.8807936081512513;
a[33]=2.05374891063182355;

a[34]= 2.32634787404084201;

return 0;}

Subroutine 3. Probit.H

#include <iostream.h>
#include <math.h>
#include <stdio.h>

#define PI 3.14159265358979323846264338327950
//The natural log of the gamma function

long double gamin(long double n)
{long double sum;

if(n==0.5) return logl(sqrtl(PI));
if (n==1.0) return logl(1.0);

if (n==2.) return logl(1.0);
sum=0;

if((n~(int)n)!= 0.5)

{ for(int i=0;i<=n-2.;i++)

{
sum=sum+logl(n-1.0-i*1.0);
b

}

else

{

sum=logl(sqrtl(PD));
for(int i=0;i<=(int)(n-1.0);i++)
sum=sum+logl(n-1.0-i*1.0);
b
return sum;

}
I

// The normal distribution -- series approximation

long double
P_ser(long double x){
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long double af,an,sum,px,dj;
af=0.;an=0.;sum=0.;px=0.;dj=0.;
int jm_x;
m_x=1;
if (x<0.0) {x=-x;m_x=-1;}
an= 1.;
sum=an;
for(j=1;j<=500;j++)
{
=sum;
dj=j*1.;
an=-an*x*x*(2.0*dj-1.)/(dj*2.0+1.0)/(2.*dj);
sum=sum-+an;
if ((sum-af)==1.e-18) break; }; /* get out*/

sum=x*sum/sqrtl(2.*PI) ;

[*cout.precision(22);*/
px=1./2.+m_x*sum;
return px;

}

//Factorial function -- only good for integer and half-integer values

long double

fac(long double n){
if(n==-1.) return sqrt(-1);
if (a==-.5) return sqrtl(PI);
if (n==0.) return 1.;

if (n==1.) return 1.;

return n*fac(n-1.);

}
//The Gamma function
long double
gam(long double x){return fac((x-1.0)); }
/"
long double
gser(long double a,long double x)
{
long double an,sum,eps;
an=1.0;
eps=1.e-20;
sum=an;
for(int n=1;n<=5000;n++)
{
an=x*an/(a+n*1.0);
sum=sum--an;
if(fabsl(an)<fabsl(sum)*eps) break;
}
return sum*expl(-x)*powl(x,a)/a;
}
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//calculates p(chi,v) using the continued fraction method

long double
p_chi(long double CHI_2,int df)
{
long double aj,bj,cj,dj,fj,tiny,x,delta_j,eps,a,res;
int j;
tiny=1.0e-45;
eps=1.0e-20;
a=df{/2.0;
x=CHI_2/2.0;
if (x<a+1.0){res= 1.-gser(a,x)/gam(a);goto get_out; };
bj=x+1.0-3;
if(bj==0.0) bj=tiny;
cj=1.0/tiny;
dj=1.0/bj;
fi=dj;
for(j=1;j<=5000;j++)
{
aj=-j*(j-a);
bj+=2.0;
dj=aj*dj+bj;
if (fabsl(dj)<tiny) dj=tiny;
cj=bj+aj/cj;
if (fabsl(cj)<tiny) cj=tiny;
dj=1.0/dj;
delta_j=cj*dj ;
fj=delta_j*fj;
if(fabsl(delta_j-1.0)<eps) break;
b
res=powl(x,a);
res=res*expl(-x);
//if(res<eps) return 0.0;
res=res/gam(a);
res=res*fj;
get_out:
if (res>1.0) return 1.0;
return res;
}
/I :
//Probability -Inf to x for the Normal distribution

long double
P(long double x)
{
long double Qx;
if (fabsl(x)<=.6) return P_ser(x);
Qx= p_chi(x*x,1.)/2.;
if (x<0) return Qx;
return 1.-Qx;

}
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7t
// The inverse of the Probability for the Normal distribution

long double
norms_inv( long double prob_x )
{

long double d,a0,a1,Za0;

int i;

a0=.1;

for (i=1; i<=2000;i++)

{ .
Za0=expl(-a0*a0/2.0)/sqrtl(2.0*PI);
al=a0-(P(a0)-prob_x)/Za0;
d=al-a0;
if (fabsl(d)<=1.e-18) break;
a0=al;

%

- llcout << "'d =''<<d<<" al="'<<al<<end];
return al;
}
/!
// The contnued fraction appraoximation of the Incomplete Bets Function
long double
betacf(long double a,long double b,long double x)
{

int m,m2;

long double eps,FPMIN,aa,c,d,del,h,qab,qam,qap;

eps=1.e-20;

FPMIN=1.e-45;

qab=a+b;

qap=a+1.0;

gam=a-1.0;

c=1.0;

d=1.0-gab*x/qap;

if(fabsl(d)<FPMIN) d=FPMIN;

d=1.0/g;

h=d;

for (m=1;m<=5000;m-++)

{
m2=2%m,;
aa=m*(b-m)*x/((qam+m2)*(a+m?2));
d=1.0+aa*d;
if(fabsl(d)<FPMIN) d=FPMIN;
c=1.0+aa/c;
if(fabsl(c)<FPMIN) c=FPMIN;
d=1.0/d;
h*=d*c;
as=-(a+m)*(qab+m)*x/((a+m2)*(qap+m2));
d=1.0+aa*d;
if(fabsl(d)<FPMIN) d=FPMIN;
c=1.0+aa/c;
if(fabsl(c)<FPMIN) c=FPMIN;
d=1.0/d;
del=d*c;
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h*=del;
if (fabsl(del-1.0)<eps) break;
}
return h;
}

// The incomplete Beta function

long double
betai(long double a, long double b,long double x)

{
long double bt;

if(x<0.0llx>1.0) sqrtl(-1);

if(x==0.0 Il x==1.0) bt=0.0;

else
bt=expl(gam1n(a+b)-gamln(a)-gamln(b)+a*logl(x)+b*log1(1.0-x));

if(x< (a+1.0)/(a+b+2.0))

return bt*betacf(a,b,x)/a;
else
return 1.0-bt*betacf(b,a,1.0-x)/b;
}
// Prob for the Students t distribution
long double

student_t(long double t,Jong double v/*deg of freedom*/)
{

}

1
// The inverse of Student's t distribution

return 1.0-betai(v/2.,1/2.,v/(v+t*t));

long double
student_t_inv( long double prob_t,long double v )
{

long double d,a0,a1,A0,A00;

int i; -

a0=0;
A00=(0.5%log](v)+gamIn(0.5)+gamln(v/2.0)-gamIn((1.0+v)/2.0));
/+((v+1.0)/2.0)*10gl(1.0+a0*a0/v));

for (i=1; i<=500;i++)
{

A0=A00+((v+1.0)/2.0)*logl(1.0+a0*a0/v);
al=a0-(student_t(a0,v)-prob_t)*expl(A0)/2.0;
if (fabsl(al-a0)<=1.e-18) break;
a0=al;

%

/lcout << "'d ="'<<d<<'" al="<<al<<end];

return al;

}
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" Main Program, Probit.CPP

#include <owlapplicat.h>
#include <owNramewin.h>
#include <owl\dialog.h>
#include <owNdc.h>
#include <owl\opensave.h>
#include <owl\edit.h>
#include <owl\checkbox.h>
#include <owl\validate.h>
#include <c:\bcqinclude\owl\window.rh>
f#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

#pragma hdrstop

#include ""c:\bc\mine\ez_io.h"
#include "'c:\bc4\mine\pobit.h"
#include ""c\bcA\mine\n_inv.h"

- ##define CM_EMPINPUT 201
#define CM_FILEOPEN  0x100
#define CM_COLOR 0x101

#idefine CM_HELPABOUT  0x200

long double PowL(long double xx,int In_lg){if (In_Ilg==1) return powl(10.0,xx);return xx; };

long double Z(long double YY){

return expl(-YY*YY/2.)/sqrtiM_PI*2.); };
char *fn;

char fln[24];

#define MAXNAMELEN 35
#define MAXSSLEN 12
#define MAXIDLEN 4
#define MAXDEPTLEN 7
#define MAXSECLEN 3

struct TParamStruct {
char DefaultDir{50];
char Converg[MAXIDLEN];
char OprecEdit[3];
char Confidence[7];
char PerCent[3];
BOOL Log_Dose;
BOOL PermFile;
BOOL Exempt;

%

1

class TParamDlg : public TDialog {
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public:
TParamDIg(TWindow* parent, const char* name, TParamStruct& tx);

%

TParamDlg:: TParamDlg(TWindow* parent, const char* name, TParamStruct& tx)
: TDialog(parent, name),
TWindow(parent)
{ TEdit *edit;

edit=new TEdit(this, 101, sizeof(tx.DefaultDir));

Jledit->SetValidator(new TFilterValidator("A-Za-z. \\: '));

edit = new TEdit(this, 103, sizeof(tx.Converg));
edit->SetValidat«r(new TRangeValidator(12, 18));

edit = new TEdit(this, 104, sizeof(tx.OprecEdit));
edit->SetValidator(new TRange Validator(0, 21));

edit = new TEdit(this, 103, sizeof(tx.Confidence));
edit->SetValidator(new TPXPictureValidator("#.#HH#'));
edit = new TEdit(this, 102, sizeof(tx.PerCent));
edit->SetValidator(new TRange Validator(0, 100));

new TCheckBox(this, 106);

new TCheckBox(this, 107);

new TCheckBox(this, 109);

/ TEdit* edit;

/* edit = new TEdit(this, 104, sizeof(tx.DeptEdit));
edit->SetValidator(new TPXPictureValidator("Sales,Dev,Mfg')); /*
edit = new TEdit(this, 103, sizeof(tx.SecEdit));
edit->SetValidator(new TPXPictureValidator("11,12,13,14,15");
*/

TransferBuffer=(void far *)&tx;

¥

class TCommDIgWnd : public TFrameWindow {
public:
TCommDIgWnd(TWindow*, const char* );
~TCommDIgWnd();

void  Paint(TDC&, BOOL, TRect&);
void  CmFileOpen();

void  CmHelpAbout();

void CmEmpInput();

TColor Color;

TFont* Font;

TOpenSaveDialog:: TData FilenameData;
void EvSize(UINT sizeType, TSize& size);

private:
TParamStruct ParamStruct;

DECLARE_RESPONSE_TABLE(TCommDIlgWnd);
%
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DEFINE_RESPONSE_TABLE1(TCommDIgWnd, TFrameWindow)

EV_WM_SIZE,
EV_COMMAND(CM_FILEOPEN, CmFileOpen),
EV_COMMAND(CM_EMPINPUT, CmEmpInput),
EV_COMMAND(CM_HELPABOUT, CmHelpAbout),
END_RESPONSE_TABLE;

TCommDIlgWnd::TCommDIlgWnd(TWindow* parent, const char* title)
: TFrameWindow(parent, title),
TWindow(parent, title),
FilenameData(OFN_FILEMUSTEXISTIOFN_HIDEREADONLYIOFN_PATHMUSTEXIST,
"Data Files (*.dat)l*.datlAll Files (*.*)i*.*[",

0, ml, "*II)
{
memset(&ParamStruct, 0, sizeof ParamStruct);
ParamStruct.Log_Dose=TRUE;
ParamStruct.PermFile=FALSE;

strcpy(ParamStruct.Converg,"18");
strcpy(ParamStruct.DefaultDir,"C:\probit\");
strepy(ParamStruct.OprecEdit,"6");
strcpy(ParamStruct.Confidence,"0.1000");
strcpy(ParamStruct.PerCent,"95");
AssignMenu("CMDLGAPMENU");
// Set up the menu
Color = TColor::Black; // Use black as the default color
Font = 0;
// Empty the handle to the font

b

TCommDlgWnd::~TCommDIgWnd()
{
delete Font;

)

/i

// We need to invalidate the entire area, not just the clip area so that

// paint gets called correctly

I

void

TCommDIlgWnd::EvSize(UINT sizeType, TSize& size)

{
Invalidate();
TFrameWindow::EvSize(sizeType,size);

) .

I
/{ Display the file name using the selected font in the selected color.
I
void
TCommDIgWnd::Paint(TDC& paintDC, BOOL, TRect&)
{
paintDC.SetTextColor(Color);
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paintDC.SetBkColor(::GetSysColor(COLOR_WINDOW));
if (Font)
paintDC.SelectObject(*Font);
paintDC.DrawText(fn, strlen(fn),
GetClientRect(), DT_CENTER |
DT_WORDBREAK);

}

"

I

void
TCommDIgWnd::CmFileOpen()

{
char msg[50];
//MessageBox(itoa(ParamStruct.Log_Dose,msg,10),"ASDASD",MB_OK);

strepy(msg,” "
fn=new char [512];
if (TFileOpenDialog(this, FilenameData).Execute() == IDOK)

{

strcpy(msg,FilenameData.FileName);
FlashWindow(1);
SetCursor(NULL,IDC_WAIT);

int lin_log, PermData;
lin_log=ParamStruct.Log_Dose;
long double confidence,tolerance,eps,outprec,percent;
outprec=atoi(ParamStruct.OprecEdit);
eps=pow10l(-atoi(ParamStruct.Converg));
confidence=_atold(ParamStruct.Confidence);
if (confidence>1.0) confidence=1.0;
if (confidence <0) confidence =0;
percent=atoi(ParamStruct.PerCent)*1.0/100.00; /loutprec=15;
PermData=ParamStruct.PermFile;
/Ichange to default to 6 for clarence
long double * en; en=new long double [200];
long double * len; len= new long double [200];
long double * y; y= new long double[200];
/! long double * Y; Y= new long double [200];
long double * p; p=new long double [200];
long double * ninv;  ninv=new long double [35];

int * hit; hit=new int [200];
int * n; n=new int [200];
int * H; H= new int {200];
int * r; r=new int [200];

long double * w; w=new long double [200];
long double YY,cr,s0,s1 ,$3,81,52,53,5xx,5xy,Syy,z.nw,x_y_,chi_2xy,chi_2LR,g,FL.D,intercept;
long double foo,00f, slope,Yint, EXP_P,yy, log_ED50, ED50,m,dum,t,h,FLU,FLL;
int j.k kmax,nmax,bigslope,ntot,newt;
newt=0;
bigslope=0;
string filename,ofile,ofile2,ofile3,pnt,pth,hdrl,hdr2;
hdr1="Prob Log{Dose] Log[Lower Limt] Log[Upper Limit] ‘n";
hdr2="Prob Dose Lower Limit Upper Limit  \n'}
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set_ninv(ninv);

pnt""";

filename=msg;

strepy(fn,filename.c_str());

for (k=0;k<=filename.rfind("\\'");k++) pth= pth+filename[k];

strepy(ParamStruct.DefaultDir,pth.c_str();

for (k=0;k<~=filename.rfind(".");k++) pnt= pnt+filenamefk];
if(PermData==FALSE) pnt="tmp.";

ofile=pnt+''out";

if(lin_log==1)
{ ofile2=pnt+"log";
ofile3=pnt+''grf";

X
else
{ hdr1=hdr2;
ofile2=pnt+"grf";
X

ofstream otf( ofile.c_str(), ios::out );
ofstream otf2( ofile2.c_str(), ios::out );
ofstream otf3( ofile3.c_str(), ios::out );
off.precision(outprec);
/I otf<<ofile <<\n';
off.precision(outprec);
nmax=iofile(en,hit.filename,lin_log);

/*the following procedure acts like a "pivot table'*/
r[0]=hit[0]; H[0]=0; k=1; foo=en[0]; ntot=hit{0];

for (j=1;j<=nmax;j++)
{ ntot=ntot+hit[j];
if(en[j]==fo0)
r[k-1]=hit[jl+rfk-1];
else /* new energy*/
{
H[K]=j;
r[k]=hit[j};
k++;
foo=en(jl;
}
by
kmax=k-1;

H[kmax+1]=nmax+1; /*need to make sure H[kmax+1] exists*/
for (k=0;k<=kmax;k++)
{
n[k]=H[k+1]-H[K];
j=HIK];
len[k]}=enl[j];
3
//Initial values for slope and Intercept of the Probit
//for normit Yint ==0
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slope=0.0;

Yint=5.0;

log_ED50=10.0; /flog_ED50=EDS50 for lin_log=TAKE_LIN
dum=1.0;

t=norms_inv((long double)0.975);

do{
oof=log_EDS50;
$0=0;51=0;53=0;S1=0;S2=0;S3=0,chi_2LR=0;
for(k=0;k<=kmax;k++)
{

plk]=(1.0*r[k])/(1.0*n[k]);
yy=len[k]*slope +Yint; //yy=expected probit
EXP_P=P(yy-5.);
YY=yy-5.0;
foo=p[k]-EXP_P;
if(foo==0.0)
{ylkl=yy; //lim as YY->INF foo/z =0, z=0
w[k]=0.0;
X

{

else

YY=YY*YY/2.0;

z=expl(YY) ;

z=z*sqrtl(M_P1*2.0);

z=1.0/z;

ylkl=yy+foo/z;
wlk]=z*z/(EXP_P-EXP_P*EXP_P);

nw=n[k]*w[k];

sl=s1+nw*len[k];

S1=S1+nw*len[k}*len[k]};

s3=s3+nw*y[k];

S2=82+nw*y[k]*len[k];

83=83+nw*y[K]*y[K];

sO=s0+nw;

//chi_2LR=chi_2LR+(r[k]*1.0- n[k]*EXP_P)*(r[k]*1.0-
n[k]*EXP_P)/n[k)/(EXP_P-EXP_P*EXP_P);

’

Sxx=S1-s1*s1/s0;
Sxy=S2-s1*53/s0;
Syy=S3-s3*s3/50;
slope=Sxy/Sxx;
x_=s1/s0; //the new equation is Y=y_+slope*(x-x_);
y_=s3/s0;
Yint=y_-slope*x_; /fie. x=0
log_ED50=x_+(5.0-y_)/slope;
if(slope>200.) {bigslope=1;break;}
if(dum>55) break; //Maximum number of iterations
dum=dum+1.0;
/Itolerance = fabsl(oof-00f);
tolerance = fabsl((log_ED50-00f));
} while (tolerance>=eps);
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chi_2xy=Syy-Sxy*Sxy/Sxx; //ICHI Squared

m=log_ED50; /NogED50 or ED50
if(chi_2xy<1.0e-18) //Chi*2 = zero
{chi_2xy=0.0;00f=1.;}

else

oof=p_chi(chi_2xy,kmax-1); /[Probability of Chi*2, N-2 Degress ofFreedom
h=1.0;

if(fabsl(percent==0.95) )

t=1.96; /Mt=student_t_inv(percent,INF);

else

t=norms_inv(1.-(1.-percent)/2.); //Calculates t for new confidence level

if(oof<confidence) //Check for good data
{newt=1;
h=chi_2xy/(kmax*1.0-1.0);  //heterogeneity factor
t=student_t_inv(percent,(long double)(kmax-1)); };
intercept=y_ -slope*x_-5.0;
EDS0=PowL(log_EDS50,}in_log);
Her=Sxy/sqrtl(Sxx*Syy) ;
/ler=cr*1.00;
oops:
if(bigslope!=1) //Fix for infinite slope
{
g=(t*t)*h/Sxx/slope/slope;
FL=m+g*(m-x_)/(1.0-g);
D= (1.-g)/s0+(m-x_)*(m-x_)/Sxx;
if(D<0.0) {bigslope=1;goto oops; }
D=sqrtl(h)*t/slope/(1.0-g)*sqrtl(D);
FLL=FL-D;
FLU=FL+D;}
else
{h=0;
g=0;
FLL=m;
FLU=m;}
B B S L L T o e i
++ .

otf<<" "<<filename.c_str()<<"\n\n"
<<\t ONES = "<<ntot<<'\{\t ZEROES = "<<(nmax-+1-ntot)<<n'
<<'\f\t h =" <<h<<\n'
<<"\f\¢t g ="<<g<<\n'
<<"\f\t t =" <<t<<\n'
[r<<\\t Snw = "<<s0<<\n'
<<\t Snwx = "<<sl<<\n'
<<'"\f\t Snwy = "'<<s3<<\n'

<<"\i\t Snwxx = "<<S1<<\n'
<<"\f\t Snwxy = "<<S2<<\n'
<<'"\f\t Snwyy = "<<S3<<\n'*/

<<"\f\t SYY = "<<Syy<<\n'
<<"\f\t SXY ="<<Sxy<<\n'
<<\fd - SXX = "<<Sxx<<\n';

if(lin_log==1) otf<<'\f\t LGEDS0 = ''<<log_ED50<<\n' ;
otf<<'\i\t ED50 = "<<ED50<<\n' :
<<'\f\t FLU = "<<PowL(FLU,lin_log)<<\n'
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<<"\f\t FLL = "<<PowL(FLL,lin_log)<<'\n\n"

<<" Pearson's CHI2 = "<<chi_2xy<<'\t DF = "<<(kmax-1)<<\t'

<<" Prob>Chi-Sq = "<< oof<<"\n\n"

<<"\f\t XBAR = "<<x_<<\n' /lonly kmax-1=N-2 because
<<"\f\¢ YBAR ="<<y_<<\n' // k goes from 0 to kmax
<<\{\t  Intercept = "<<intercept<<’\n'

<<\t Slope = "<<slope<<\n'

<<'Tteration = "'<<(int) dum<<"\n\n\n\n"<<endl;

otf2<<'"\n Input File "<<filename.c_str()<<'\n\n" ;

otf2<<hdrl ;

/| +0.01 -0.881940268668475 -1.78261681790058  -0.572033298124713
otf2.precision(outprec);

otf2.setf(ios::showposlios::left);

otf2<<\n';

for(k=1;k<=10;k++)

{ m=(ninv[k-1]-intercept)/slope;
FL=m+g*(m-x_)/(1.-g);
D=t/slope/(1.-g)*sqrtl((1.-g)/s0+(m-x_)*(m-x_)/Sxx);
otf2.width(5);
otf2<<(k*0.01)<<\t;
otf2.width(18);
otf2<<m<<\t';
if(bigslope!=1){
otf2.width(18);
otf2<<(FL-D)<<\t';
otf2.width(18);
otf2<<(FL+D)<<\n'; }
else

{

otf2.width(18);

otf2<<" - "<\t

otf2.width(18);

otf2<<'" - "<<\n'; }
5

for(k=1;k<=16;k++)

{ m=(ninv{k+9]-intercept)/slope;
FL=m+g*(m-x_)/(1.-g);
D=t/slope/(1.-g)*sqrtl((1.-g)/s0+(m-x_)*(m-x_)/Sxx);
otf2.width(5);
otf2<<(.1+k*0.05)<<\t);
otf2.width(18);
otf2<<m<<\t';

if(bigslope!=1){
otf2.width(18);
otf2<<(FL-D)<<\t';
otf2.width(18);
otf2<<(FL+D)<<\n'; }
else
{
otf2.width(18);
otf2<<!" - e\t
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otf2.width(18);
otf2<<" - "e<\n'; }

)5

for(k=1;k<=9;k++)

{ m=(ninv{k+25]-intercept)/slope;
FL=m+g*(m-x_)/(1.-8);
D=t/slope/(1.-g)*sqrtl((1.-g)/s0+(m-x_)*(m-x_)/Sxx);
otf2.width(5);
otf2<<(.9+k*0.01)<<\t}
otf2.width(18);
otf2<<m<<\t';
if(bigslope!=1){
otf2.width(18);
otf2<<(FL-D)<<\t';
otf2.width(18);
otf2<<(FL+D)<<\n'; }
else
{
otf2.width(18);
otf2<<" - "<<\t;
otf2.width(18);
otf2<<'" - "<<\n'; }

%

Vi

if(lin_log==1) //do this part because we also want the file in regular non-log units

{

/44t Output tof ile o, grf! b
otf3.precision(outprec);

otf3<<\n Input File '<<filename.c_str()<<"\n\n" ;

otf3<<hdr2 ;
// +0.01 -0.881940268668475 -1.78261681790058  -0.572033298124713

otf3.setf(ios::showposlios::left);

for(k=1;k<=10;k++)

{ m=(ninv[k-1]-intercept)/slope;
FL=m+g*(m-x_)/(1.-g);
D=t/slope/(1.-g)*sqrtl((1.-g)/s0+(m-x_)*(m-x_)/Sxx);
otf3.width(5);
otf3<<(k*0.01)<<\t;
otf3.width(18);
otf3<<PowL(m,lin_log)<<\t';

if(bigslope!=1){
otf3.width(18);
otf3<<PowL((FL-D),lin_log)<<\\t';
otf3.width(18);

' otf3<<PowL((FL+D),lin_log)<<"\n'; }
else
{

. otf3.width(18);
otf3<<! - <<\t
otf3.width(18);
otf3<<" - "'<<\n'; }
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%

for(k=1;k<=16;k++)

{ m=(ninv[k+9]-intercept)/slope;
FL=m+g*(m-x_)/(1.-8);
D=t/slope/(1.-g)*sqrtl((1.-g)/sO+(m-x_)*(m-x_)/Sxx);
otf3.width(5);
otf3<<(.1+k*0.05)<<\t';
otf3.width(18);
otf3<<PowL(m,lin_log)<<\t';
if(bigslope!=1){
otf3.width(18);
otf3<<PowL((FL-D),lin_log)<<\t;
otf3.width(18);
otf3<<PowL((FL+D),lin_log)<<\n'; }
else
{
otf3.width(18);
otf3<<" - "<<\t};
otf3.width(18);
otf3<<" - "<<\n'; }

}

for(k=1;k<=9;k++)

{ m=(ninv[k+25]-intercept)/slope;
FL=m+g*(m-x_)/(1.-g);
D=t/slope/(1.-g)*sqrtl((1.-g)/s0+(m-x_)*(m-x_)/Sxx);
otf3.width(5);
otf3<<(.9+k*0.01)<<N\t;
otf3.width(18);
otf3<<PowL(m,lin_log)<<\t';
if(bigslope!=1){
otf3.width(18);
otf3<<PowL((FL-D),lin_log)<<\t};
otf3.width(18);
otf3<<PowL((FL+D),lin_log)<<\n'; }
else
{
otf3.width(18);
otf3<<" - "<\t
otf3.width(18);
otf3<<" - "<<\n'; }

%
%
/
4+ +t-+0ut put to Main Window+++++HH+++H++HHd bt
strcat(fn,\n  Intercept=");
strcat(fn,gevt(intercept,21,msg));
strcat(fn,"\n");
strcat(fn,'"\n Slope=");
strcat(fn,gevt(slope,21,msg));
strcat(fn,"\n");
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if(lin_log==1)

{ strcat(fn,"\n LogED50=");
strcat(fn,gcvt(log_EDS50,21,msg));
strcat(fn,"\n");

%

strcat(fn,"\n ED50=");

strcat(fn,gcvt(ED50,21,msg));

strcat(fn,"\n");

strcat(fn,"\n Log Fiducial Limits\n ') ;

strcat(fn,'"\n"); 4

strcat(fn,gevt(FLL,21,msg));

strcat(fn," "
strcat(fn,gevt(FLU,21,msg));
strcat(fn,"\n"");

Vi
otf3.close();

otf2.close();

otf.close();

FlashWindow(0);
Invalidate();
SetCursor(NULL,IDC_ARROW);

ofile="notepad "+ofile;
ofile2="notepad "+ofile2;
ofile3="notepad "+ofile3;

/I ofile2="c:\\ExceNexcel c:\\exceN\probit.xlt'; //this works
WinExec((const char*)ofile.c_str(),SW_RESTORE);
WinExec((const char*)ofile2.c_str(),SW_RESTORE);
if(lin_log==1) WinExec((const char*)ofile3.c_str(),SW_RESTORE);

%
}

I
i
void
TCommDIgWnd::CmHelpAbout()
{
MessageBox(" Finney's Probit “aWritten by Dr. Lonnie W. Manning\n"
" Copyright (c) 1995 n The NutHouse",
"About EZ-PROBIT",
MB_OK);
}
/I

void
TCommDIlgWnd::CmEmplnput()
{
char emplnfo[sizeof (TParamStruct)+2+1];
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if (TParaleg(this,“PARAMINFO", ParamStruct).Execute() == IDOK) {

strcpy(emplInfo,ParamStruct.DefaultDir);
strcat(emplnfo, '"\n'");
strcat(emplnfo, ParamStruct.Converg);
strcat(emplInfo, "\n");
/*  strcat(emplnfo, ParamStruct.DeptEdit);
strcat(emplnfo, "\n");
strcat(emplnfo, ParamStruct.SecEdit);
strcat(emplnfo, "\n"); */
/I strcpy(emplnfo, ParamStruct.Log_Dose ? "FullTime " : "PartTime "
strcat(emplnfo, ParamStruct.Log_Dose ? "Log Dose\n " : "Lin Dose\n ");

strcat(emplnfo, ParamStruct.PermFile ? "Save Output" : "Don\'t Save Output\n ');
strcat(emplnfo, ParamStruct.Exempt ? "Exempt\n " : "NonExemptwa ");
MessageBox(emplnfo, "Information Stored", MB_OK);

}
}
i :
class TCommDIgApp : public TApplication {
public:
TCommDIgApp() : TApplication() {}
void InitMainWindow() {
MainWindow = new TCommDIgWnd(0, "EZ-PROBIT");
MainWindow->Setlcon(this, "EZ_PROBIT");
EnableCt13d();
}
%
int

OwIMain(int /*argc*/, char* /*argv*/ [])

return TCommDIgApp().Run();
}
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